Authors: Ryan D. Sochol, Daniel Corbett, Sarah Hesse, William E.R. Krieger, Ki Tae Wolf, Minkyu Kim, Kosuke Iwai, Song Li, Luke P. Lee and Liwei Lin
PDF link
ABSTRACT
Continuous flow particulate-based microfluidic processors are in critical demand for emerging applications in chemistry and biology, such as point-of-care molecular diagnostics. Challenges remain, however, for accomplishing biochemical assays in which microparticle immobilization is desired or required during intermediate stages of fluidic reaction processes. Here we present a dual-mode microfluidic reactor that functions autonomously under continuous flow conditions to: (i) execute multi-stage particulate-based fluidic mixing routines, and (ii) array select numbers of microparticles during each reaction stage (e.g., for optical detection). We employ this methodology to detect the inflammatory cytokine, interferon-gamma (IFN-γ), via a six-stage aptamer-based sandwich assay.